Properties

Label 73.3.7.18a1.1
Base \(\Q_{73}\)
Degree \(21\)
e \(7\)
f \(3\)
c \(18\)
Galois group $F_7$ (as 21T4)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{3} + 2 x + 68 )^{7} + 73$ Copy content Toggle raw display

Invariants

Base field: $\Q_{73}$
Degree $d$: $21$
Ramification index $e$: $7$
Residue field degree $f$: $3$
Discriminant exponent $c$: $18$
Discriminant root field: $\Q_{73}(\sqrt{5})$
Root number: $1$
$\Aut(K/\Q_{73})$: $C_3$
This field is not Galois over $\Q_{73}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$389016 = (73^{ 3 } - 1)$

Intermediate fields

73.3.1.0a1.1, 73.1.7.6a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:73.3.1.0a1.1 $\cong \Q_{73}(t)$ where $t$ is a root of \( x^{3} + 2 x + 68 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{7} + 73 \) $\ \in\Q_{73}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^6 + 7 z^5 + 21 z^4 + 35 z^3 + 35 z^2 + 21 z + 7$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $42$
Galois group: $F_7$ (as 21T4)
Inertia group: Intransitive group isomorphic to $C_7$
Wild inertia group: $C_1$
Galois unramified degree: $6$
Galois tame degree: $7$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.8571428571428571$
Galois splitting model:not computed