Properties

Label 7.1.21.35a1.41
Base \(\Q_{7}\)
Degree \(21\)
e \(21\)
f \(1\)
c \(35\)
Galois group not computed

Related objects

Downloads

Learn more

Defining polynomial

\(x^{21} + 21 x^{17} + 7 x^{16} + 14 x^{15} + 14\) Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $21$
Ramification index $e$: $21$
Residue field degree $f$: $1$
Discriminant exponent $c$: $35$
Discriminant root field: $\Q_{7}(\sqrt{7})$
Root number: $-i$
$\Aut(K/\Q_{7})$: $C_1$
Visible Artin slopes:$[\frac{11}{6}]$
Visible Swan slopes:$[\frac{5}{6}]$
Means:$\langle\frac{5}{7}\rangle$
Rams:$(\frac{5}{2})$
Jump set:undefined
Roots of unity:$6 = (7 - 1)$

Intermediate fields

7.1.3.2a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{7}$
Relative Eisenstein polynomial: \( x^{21} + 21 x^{17} + 7 x^{16} + 14 x^{15} + 14 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{14} + 3 z^7 + 3$,$3 z^3 + 6$
Associated inertia:$1$,$3$
Indices of inseparability:$[15, 0]$

Invariants of the Galois closure

Galois degree: not computed
Galois group: not computed
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed