Properties

Label 7.1.14.26a1.23
Base \(\Q_{7}\)
Degree \(14\)
e \(14\)
f \(1\)
c \(26\)
Galois group $D_7^2:C_6$ (as 14T32)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{14} + 7 x^{13} + 49 x + 21\) Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $14$
Ramification index $e$: $14$
Residue field degree $f$: $1$
Discriminant exponent $c$: $26$
Discriminant root field: $\Q_{7}(\sqrt{3})$
Root number: $1$
$\Aut(K/\Q_{7})$: $C_1$
This field is not Galois over $\Q_{7}.$
Visible Artin slopes:$[\frac{25}{12}]$
Visible Swan slopes:$[\frac{13}{12}]$
Means:$\langle\frac{13}{14}\rangle$
Rams:$(\frac{13}{6})$
Jump set:undefined
Roots of unity:$6 = (7 - 1)$

Intermediate fields

$\Q_{7}(\sqrt{7})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{7}$
Relative Eisenstein polynomial: \( x^{14} + 7 x^{13} + 49 x + 21 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^7 + 2$,$2 z + 5$
Associated inertia:$1$,$1$
Indices of inseparability:$[13, 0]$

Invariants of the Galois closure

Galois degree: $1176$
Galois group: $D_7^2:C_6$ (as 14T32)
Inertia group: $C_7^2:C_{12}$ (as 14T23)
Wild inertia group: $C_7^2$
Galois unramified degree: $2$
Galois tame degree: $12$
Galois Artin slopes: $[\frac{25}{12}, \frac{25}{12}]$
Galois Swan slopes: $[\frac{13}{12},\frac{13}{12}]$
Galois mean slope: $2.0595238095238098$
Galois splitting model: $x^{14} - 40965545615349084598638 x^{12} - 6688002228360516181838922809746216 x^{11} - 451040661003022103953656229743184836499596993 x^{10} - 7445161854528935202220287981797794743706060948934444424 x^{9} + 817939998153164679058611901768644349283179455534212695229958609968 x^{8} + 50616993565499021906119834424696751194878310379050509870210199475955682396016 x^{7} + 575554511102105867450664329112060921105763808180786473425468030227768034548074990907535 x^{6} - 33826853530664438741305677598696196493422556457557431591382504203533624945484406178755360413165584 x^{5} - 976278346474254869464042331876399146037424170521760078781896177014517410960367400438153701140564727825388918 x^{4} + 2343121740817329582308642948968477251499223809616118748170549227392940698189705254268849496277759207247548857888518968 x^{3} + 245785007264690294323125474732576127395467340411166496963902465426258191231463442965335116472831492918672056412126822538633940305 x^{2} + 1272909351096610316142923561818406556561678740672922620869181236636502788138504416725905606274627188976341365599341191345948751734861514008 x + 1481890681832802928474015141096152757270454048979751400739225812061212909438656759849039069806705830802234784691415030905104997246426702896509813204$ Copy content Toggle raw display