Properties

Label 7.1.14.22a1.5
Base \(\Q_{7}\)
Degree \(14\)
e \(14\)
f \(1\)
c \(22\)
Galois group $D_7^2:C_6$ (as 14T32)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{14} + 28 x^{10} + 21 x^{9} + 7\) Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $14$
Ramification index $e$: $14$
Residue field degree $f$: $1$
Discriminant exponent $c$: $22$
Discriminant root field: $\Q_{7}(\sqrt{3})$
Root number: $1$
$\Aut(K/\Q_{7})$: $C_1$
This field is not Galois over $\Q_{7}.$
Visible Artin slopes:$[\frac{7}{4}]$
Visible Swan slopes:$[\frac{3}{4}]$
Means:$\langle\frac{9}{14}\rangle$
Rams:$(\frac{3}{2})$
Jump set:undefined
Roots of unity:$6 = (7 - 1)$

Intermediate fields

$\Q_{7}(\sqrt{7\cdot 3})$

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{7}$
Relative Eisenstein polynomial: \( x^{14} + 28 x^{10} + 21 x^{9} + 7 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^7 + 2$,$2 z^3 + 1$
Associated inertia:$1$,$3$
Indices of inseparability:$[9, 0]$

Invariants of the Galois closure

Galois degree: $1176$
Galois group: $D_7^2:C_6$ (as 14T32)
Inertia group: $C_7^2:C_4$ (as 14T12)
Wild inertia group: $C_7^2$
Galois unramified degree: $6$
Galois tame degree: $4$
Galois Artin slopes: $[\frac{7}{4}, \frac{7}{4}]$
Galois Swan slopes: $[\frac{3}{4},\frac{3}{4}]$
Galois mean slope: $1.7295918367346939$
Galois splitting model: $x^{14} + 524007546021825533868711126 x^{12} - 246357903033113610102539260995767942287 x^{11} + 144534820006540453758861608410771732108310602138905069 x^{10} - 44753780782181081016903242563734376240485165758355250227877786770 x^{9} + 30852715922809665114121047831323952086424476016127052051810100498236905788619258 x^{8} + 18687600300236774174156149759438347284913491803045267236388077812705722689166058551825176015 x^{7} + 4282137993286657409146439644362139768725980811804778164150514293227414601148931495596736296877573530878396 x^{6} + 4690142979919130568998020347364599408262480144280263363681827472334686651705098647328736318750102516236812722000156431 x^{5} + 295731019836322551136929707546635164824219990246994331361554992191071515534835267949251720200238945975836042429373711687169156313612 x^{4} + 369852472383119928543073192367916018193829905376405525447983099531104948618009212015109770561929053266386295688150628975599603971612408787416919 x^{3} + 7806936724049307306590229350698076792439035022475128494574486418642882631261797215703532081533167672575973278853916648286898870098373128226268564502877428399 x^{2} + 3002161375607999399184285028312680551547500397891150385501683853093621403391673680992298324088464276574315204530244085823587989656736893917841115779750045430660716500928 x + 94559480214754183437397500009314678477448798697139796003494936638158749924396376893712449077278486501665445676064811557340099139057867482473426186027334180578727343789540076823455004$ Copy content Toggle raw display