Properties

Label 7.1.12.11a1.6
Base \(\Q_{7}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(11\)
Galois group $D_4 \times C_3$ (as 12T14)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 42\) Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $12$
Ramification index $e$: $12$
Residue field degree $f$: $1$
Discriminant exponent $c$: $11$
Discriminant root field: $\Q_{7}(\sqrt{7\cdot 3})$
Root number: $i$
$\Aut(K/\Q_{7})$: $C_6$
This field is not Galois over $\Q_{7}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$6 = (7 - 1)$

Intermediate fields

$\Q_{7}(\sqrt{7})$, 7.1.3.2a1.1, 7.1.4.3a1.2, 7.1.6.5a1.6

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{7}$
Relative Eisenstein polynomial: \( x^{12} + 42 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{11} + 5 z^{10} + 3 z^9 + 3 z^8 + 5 z^7 + z^6 + z^4 + 5 z^3 + 3 z^2 + 3 z + 5$
Associated inertia:$2$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $24$
Galois group: $C_3\times D_4$ (as 12T14)
Inertia group: $C_{12}$ (as 12T1)
Wild inertia group: $C_1$
Galois unramified degree: $2$
Galois tame degree: $12$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.9166666666666666$
Galois splitting model:$x^{12} - 2 x^{11} - 4 x^{10} - 4 x^{9} - 2 x^{8} + 8 x^{7} + 7 x^{6} + 8 x^{5} - 2 x^{4} - 4 x^{3} - 4 x^{2} - 2 x + 1$