Defining polynomial
\(x^{12} + 42\)
|
Invariants
Base field: | $\Q_{7}$ |
Degree $d$: | $12$ |
Ramification index $e$: | $12$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $11$ |
Discriminant root field: | $\Q_{7}(\sqrt{7\cdot 3})$ |
Root number: | $i$ |
$\Aut(K/\Q_{7})$: | $C_6$ |
This field is not Galois over $\Q_{7}.$ | |
Visible Artin slopes: | $[\ ]$ |
Visible Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Jump set: | undefined |
Roots of unity: | $6 = (7 - 1)$ |
Intermediate fields
$\Q_{7}(\sqrt{7})$, 7.1.3.2a1.1, 7.1.4.3a1.2, 7.1.6.5a1.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{7}$ |
Relative Eisenstein polynomial: |
\( x^{12} + 42 \)
|
Ramification polygon
Residual polynomials: | $z^{11} + 5 z^{10} + 3 z^9 + 3 z^8 + 5 z^7 + z^6 + z^4 + 5 z^3 + 3 z^2 + 3 z + 5$ |
Associated inertia: | $2$ |
Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
Galois degree: | $24$ |
Galois group: | $C_3\times D_4$ (as 12T14) |
Inertia group: | $C_{12}$ (as 12T1) |
Wild inertia group: | $C_1$ |
Galois unramified degree: | $2$ |
Galois tame degree: | $12$ |
Galois Artin slopes: | $[\ ]$ |
Galois Swan slopes: | $[\ ]$ |
Galois mean slope: | $0.9166666666666666$ |
Galois splitting model: | $x^{12} - 2 x^{11} - 4 x^{10} - 4 x^{9} - 2 x^{8} + 8 x^{7} + 7 x^{6} + 8 x^{5} - 2 x^{4} - 4 x^{3} - 4 x^{2} - 2 x + 1$ |