Properties

Label 67.17.1.0a1.1
Base \(\Q_{67}\)
Degree \(17\)
e \(1\)
f \(17\)
c \(0\)
Galois group $C_{17}$ (as 17T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{17} + 5 x + 65\) Copy content Toggle raw display

Invariants

Base field: $\Q_{67}$
Degree $d$: $17$
Ramification index $e$: $1$
Residue field degree $f$: $17$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{67}$
Root number: $1$
$\Aut(K/\Q_{67})$ $=$$\Gal(K/\Q_{67})$: $C_{17}$
This field is Galois and abelian over $\Q_{67}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$11047694236668359048016134593026 = (67^{ 17 } - 1)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 67 }$.

Canonical tower

Unramified subfield:67.17.1.0a1.1 $\cong \Q_{67}(t)$ where $t$ is a root of \( x^{17} + 5 x + 65 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x - 67 \) $\ \in\Q_{67}(t)[x]$ Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois degree: $17$
Galois group: $C_{17}$ (as 17T1)
Inertia group: trivial
Wild inertia group: $C_1$
Galois unramified degree: $17$
Galois tame degree: $1$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.0$
Galois splitting model:not computed