Properties

Label 5.15.22.24
Base \(\Q_{5}\)
Degree \(15\)
e \(15\)
f \(1\)
c \(22\)
Galois group $C_5\wr S_3$ (as 15T32)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{15} + 20 x^{10} + 15 x^{9} + 5 x^{8} + 5\) Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $15$
Ramification exponent $e$: $15$
Residue field degree $f$: $1$
Discriminant exponent $c$: $22$
Discriminant root field: $\Q_{5}(\sqrt{2})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 5 }) }$: $5$
This field is not Galois over $\Q_{5}.$
Visible slopes:$[5/3]$

Intermediate fields

5.3.2.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{5}$
Relative Eisenstein polynomial: \( x^{15} + 20 x^{10} + 15 x^{9} + 5 x^{8} + 5 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$3z^{4} + 2$,$z^{10} + 3z^{5} + 3$
Associated inertia:$1$,$2$
Indices of inseparability:$[8, 0]$

Invariants of the Galois closure

Galois group:$C_5\wr S_3$ (as 15T32)
Inertia group:$C_5^2:C_3$ (as 15T9)
Wild inertia group:$C_5^2$
Unramified degree:$10$
Tame degree:$3$
Wild slopes:$[5/3, 5/3]$
Galois mean slope:$122/75$
Galois splitting model: $x^{15} - 5 x^{14} + 10 x^{13} - 20 x^{12} - 2375 x^{11} + 24106 x^{10} - 157220 x^{9} + 823440 x^{8} - 2937705 x^{7} + 8035325 x^{6} - 17532663 x^{5} + 11317655 x^{4} + 30532065 x^{3} - 42235405 x^{2} + 8389425 x + 9757683$ Copy content Toggle raw display