Properties

Label 5.15.18.48
Base \(\Q_{5}\)
Degree \(15\)
e \(15\)
f \(1\)
c \(18\)
Galois group $C_5\wr S_3$ (as 15T32)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{15} + 20 x^{5} + 10 x^{4} + 5\) Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $15$
Ramification exponent $e$: $15$
Residue field degree $f$: $1$
Discriminant exponent $c$: $18$
Discriminant root field: $\Q_{5}(\sqrt{2})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 5 }) }$: $5$
This field is not Galois over $\Q_{5}.$
Visible slopes:$[4/3]$

Intermediate fields

5.3.2.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{5}$
Relative Eisenstein polynomial: \( x^{15} + 20 x^{5} + 10 x^{4} + 5 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$3z^{4} + 2$,$z^{10} + 3z^{5} + 3$
Associated inertia:$1$,$2$
Indices of inseparability:$[4, 0]$

Invariants of the Galois closure

Galois group:$C_5\wr S_3$ (as 15T32)
Inertia group:$C_5^2:C_3$ (as 15T9)
Wild inertia group:$C_5^2$
Unramified degree:$10$
Tame degree:$3$
Wild slopes:$[4/3, 4/3]$
Galois mean slope:$98/75$
Galois splitting model: $x^{15} - 5 x^{14} + 15 x^{13} - 60 x^{12} + 145 x^{11} - 242 x^{10} + 440 x^{9} - 220 x^{8} - 945 x^{7} + 1140 x^{6} + 288 x^{5} - 55 x^{4} - 485 x^{3} + 540 x^{2} + 595 x - 369$ Copy content Toggle raw display