Properties

Label 5.1.20.37a1.49
Base \(\Q_{5}\)
Degree \(20\)
e \(20\)
f \(1\)
c \(37\)
Galois group $C_5^4.\OD_{16}$ (as 20T386)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{20} + 10 x^{19} + 15 x^{18} + 25 x^{2} + 5\) Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $20$
Ramification index $e$: $20$
Residue field degree $f$: $1$
Discriminant exponent $c$: $37$
Discriminant root field: $\Q_{5}(\sqrt{5})$
Root number: $-1$
$\Aut(K/\Q_{5})$: $C_1$
This field is not Galois over $\Q_{5}.$
Visible Artin slopes:$[\frac{17}{8}]$
Visible Swan slopes:$[\frac{9}{8}]$
Means:$\langle\frac{9}{10}\rangle$
Rams:$(\frac{9}{2})$
Jump set:$[1, 21]$
Roots of unity:$20 = (5 - 1) \cdot 5$

Intermediate fields

$\Q_{5}(\sqrt{5})$, 5.1.4.3a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{5}$
Relative Eisenstein polynomial: \( x^{20} + 10 x^{19} + 15 x^{18} + 25 x^{2} + 5 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{15} + 4 z^{10} + z^5 + 4$,$4 z^2 + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[18, 0]$

Invariants of the Galois closure

Galois degree: $10000$
Galois group: $C_5^4.\OD_{16}$ (as 20T386)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed