Properties

Label 41.9.1.0a1.1
Base \(\Q_{41}\)
Degree \(9\)
e \(1\)
f \(9\)
c \(0\)
Galois group $C_9$ (as 9T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{9} + 4 x^{3} + 31 x^{2} + 5 x + 35\) Copy content Toggle raw display

Invariants

Base field: $\Q_{41}$
Degree $d$: $9$
Ramification index $e$: $1$
Residue field degree $f$: $9$
Discriminant exponent $c$: $0$
Discriminant root field: $\Q_{41}$
Root number: $1$
$\Aut(K/\Q_{41})$ $=$ $\Gal(K/\Q_{41})$: $C_9$
This field is Galois and abelian over $\Q_{41}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$327381934393960 = (41^{ 9 } - 1)$

Intermediate fields

41.3.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:41.9.1.0a1.1 $\cong \Q_{41}(t)$ where $t$ is a root of \( x^{9} + 4 x^{3} + 31 x^{2} + 5 x + 35 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x - 41 \) $\ \in\Q_{41}(t)[x]$ Copy content Toggle raw display

Ramification polygon

The ramification polygon is trivial for unramified extensions.

Invariants of the Galois closure

Galois degree: $9$
Galois group: $C_9$ (as 9T1)
Inertia group: trivial
Wild inertia group: $C_1$
Galois unramified degree: $9$
Galois tame degree: $1$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.0$
Galois splitting model:$x^{9} - x^{8} - 8 x^{7} + 7 x^{6} + 21 x^{5} - 15 x^{4} - 20 x^{3} + 10 x^{2} + 5 x - 1$