Properties

Label 3.6.3.30a1.3
Base \(\Q_{3}\)
Degree \(18\)
e \(3\)
f \(6\)
c \(30\)
Galois group $C_3^2:D_6$ (as 18T42)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{6} + 2 x^{4} + x^{2} + 2 x + 2 )^{3} + \left(9 x^{5} + 9 x^{4}\right) ( x^{6} + 2 x^{4} + x^{2} + 2 x + 2 ) + 3$ Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $18$
Ramification index $e$: $3$
Residue field degree $f$: $6$
Discriminant exponent $c$: $30$
Discriminant root field: $\Q_{3}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{3})$: $C_2$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[\frac{5}{2}]$
Visible Swan slopes:$[\frac{3}{2}]$
Means:$\langle1\rangle$
Rams:$(\frac{3}{2})$
Jump set:undefined
Roots of unity:$728 = (3^{ 6 } - 1)$

Intermediate fields

$\Q_{3}(\sqrt{2})$, 3.3.1.0a1.1, 3.6.1.0a1.1, 3.3.3.15a1.5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:3.6.1.0a1.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{6} + 2 x^{4} + x^{2} + 2 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + \left(9 t^{5} + 9 t^{4} + 18\right) x + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + (t^4 + t^3 + t^2 + t + 1)$
Associated inertia:$1$
Indices of inseparability:$[3, 0]$

Invariants of the Galois closure

Galois degree: $108$
Galois group: $C_3^2:D_6$ (as 18T42)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed