Defining polynomial
$( x^{6} + 2 x^{4} + x^{2} + 2 x + 2 )^{3} + \left(3 x^{3} + 3 x^{2} + 6 x\right) ( x^{6} + 2 x^{4} + x^{2} + 2 x + 2 )^{2} + 3$
|
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $18$ |
Ramification index $e$: | $3$ |
Residue field degree $f$: | $6$ |
Discriminant exponent $c$: | $24$ |
Discriminant root field: | $\Q_{3}(\sqrt{2})$ |
Root number: | $1$ |
$\Aut(K/\Q_{3})$: | $C_3$ |
Visible Artin slopes: | $[2]$ |
Visible Swan slopes: | $[1]$ |
Means: | $\langle\frac{2}{3}\rangle$ |
Rams: | $(1)$ |
Jump set: | undefined |
Roots of unity: | $728 = (3^{ 6 } - 1)$ |
Intermediate fields
$\Q_{3}(\sqrt{2})$, 3.3.1.0a1.1, 3.6.1.0a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | 3.6.1.0a1.1 $\cong \Q_{3}(t)$ where $t$ is a root of
\( x^{6} + 2 x^{4} + x^{2} + 2 x + 2 \)
|
Relative Eisenstein polynomial: |
\( x^{3} + \left(3 t^{5} + 3 t^{4} + 3 t^{2} + 3 t + 3\right) x^{2} + 9 t + 3 \)
$\ \in\Q_{3}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z^2 + (2 t^5 + 2 t^3 + 2)$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[2, 0]$ |
Invariants of the Galois closure
Galois degree: | not computed |
Galois group: | not computed |
Inertia group: | not computed |
Wild inertia group: | not computed |
Galois unramified degree: | not computed |
Galois tame degree: | not computed |
Galois Artin slopes: | not computed |
Galois Swan slopes: | not computed |
Galois mean slope: | not computed |
Galois splitting model: | not computed |