Properties

Label 3.5.3.25a1.9
Base \(\Q_{3}\)
Degree \(15\)
e \(3\)
f \(5\)
c \(25\)
Galois group $C_3^5:C_{10}$ (as 15T44)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{5} + 2 x + 1 )^{3} + \left(9 x^{3} + 9 x\right) ( x^{5} + 2 x + 1 ) + 3$ Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $15$
Ramification index $e$: $3$
Residue field degree $f$: $5$
Discriminant exponent $c$: $25$
Discriminant root field: $\Q_{3}(\sqrt{3\cdot 2})$
Root number: $i$
$\Aut(K/\Q_{3})$: $C_1$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[\frac{5}{2}]$
Visible Swan slopes:$[\frac{3}{2}]$
Means:$\langle1\rangle$
Rams:$(\frac{3}{2})$
Jump set:undefined
Roots of unity:$242 = (3^{ 5 } - 1)$

Intermediate fields

3.5.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:3.5.1.0a1.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{5} + 2 x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + \left(9 t^{3} + 9 t\right) x + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + (t^4 + t^3 + t^2 + 1)$
Associated inertia:$1$
Indices of inseparability:$[3, 0]$

Invariants of the Galois closure

Galois degree: $2430$
Galois group: $C_3^5:C_{10}$ (as 15T44)
Inertia group: Intransitive group isomorphic to $C_3^4:S_3$
Wild inertia group: $C_3^5$
Galois unramified degree: $5$
Galois tame degree: $2$
Galois Artin slopes: $[\frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{5}{2}]$
Galois Swan slopes: $[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{3}{2}]$
Galois mean slope: $2.162551440329218$
Galois splitting model: $x^{15} - 9 x^{12} - 126 x^{9} + 405 x^{6} + 81 x^{3} - 243$ Copy content Toggle raw display