Defining polynomial
$( x^{5} + 2 x + 1 )^{3} + \left(3 x^{2} + 3 x\right) ( x^{5} + 2 x + 1 )^{2} + 3$
|
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $15$ |
Ramification index $e$: | $3$ |
Residue field degree $f$: | $5$ |
Discriminant exponent $c$: | $20$ |
Discriminant root field: | $\Q_{3}(\sqrt{2})$ |
Root number: | $1$ |
$\Aut(K/\Q_{3})$: | $C_1$ |
This field is not Galois over $\Q_{3}.$ | |
Visible Artin slopes: | $[2]$ |
Visible Swan slopes: | $[1]$ |
Means: | $\langle\frac{2}{3}\rangle$ |
Rams: | $(1)$ |
Jump set: | undefined |
Roots of unity: | $242 = (3^{ 5 } - 1)$ |
Intermediate fields
3.5.1.0a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | 3.5.1.0a1.1 $\cong \Q_{3}(t)$ where $t$ is a root of
\( x^{5} + 2 x + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{3} + \left(6 t^{3} + 3 t\right) x^{2} + 3 \)
$\ \in\Q_{3}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z^2 + (2 t^4 + t^2 + 1)$ |
Associated inertia: | $2$ |
Indices of inseparability: | $[2, 0]$ |
Invariants of the Galois closure
Galois degree: | $2430$ |
Galois group: | $C_3^5:C_{10}$ (as 15T44) |
Inertia group: | Intransitive group isomorphic to $C_3^5$ |
Wild inertia group: | $C_3^5$ |
Galois unramified degree: | $10$ |
Galois tame degree: | $1$ |
Galois Artin slopes: | $[2, 2, 2, 2, 2]$ |
Galois Swan slopes: | $[1,1,1,1,1]$ |
Galois mean slope: | $1.991769547325103$ |
Galois splitting model: |
$x^{15} + 15 x^{13} - 22 x^{12} - 9 x^{11} - 330 x^{10} - 621 x^{9} + 1494 x^{7} + 9284 x^{6} + 21825 x^{5} + 4026 x^{4} - 62524 x^{3} - 95832 x^{2} - 46464 x - 3872$
|