Properties

Label 3.5.3.20a16.3
Base \(\Q_{3}\)
Degree \(15\)
e \(3\)
f \(5\)
c \(20\)
Galois group $C_3\wr C_5$ (as 15T36)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{5} + 2 x + 1 )^{3} + \left(3 x^{3} + 6 x^{2} + 3 x + 3\right) ( x^{5} + 2 x + 1 )^{2} + 21$ Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $15$
Ramification index $e$: $3$
Residue field degree $f$: $5$
Discriminant exponent $c$: $20$
Discriminant root field: $\Q_{3}$
Root number: $1$
$\Aut(K/\Q_{3})$: $C_3$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[2]$
Visible Swan slopes:$[1]$
Means:$\langle\frac{2}{3}\rangle$
Rams:$(1)$
Jump set:undefined
Roots of unity:$242 = (3^{ 5 } - 1)$

Intermediate fields

3.5.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:3.5.1.0a1.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{5} + 2 x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + \left(3 t^{4} + 3 t^{3} + 3 t^{2} + 6 t + 6\right) x^{2} + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + (2 t^4 + t^2)$
Associated inertia:$1$
Indices of inseparability:$[2, 0]$

Invariants of the Galois closure

Galois degree: $1215$
Galois group: $C_3\wr C_5$ (as 15T36)
Inertia group: Intransitive group isomorphic to $C_3^5$
Wild inertia group: $C_3^5$
Galois unramified degree: $5$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 2, 2, 2]$
Galois Swan slopes: $[1,1,1,1,1]$
Galois mean slope: $1.991769547325103$
Galois splitting model: $x^{15} - 105 x^{13} - 10 x^{12} + 4410 x^{11} + 840 x^{10} - 94955 x^{9} - 26460 x^{8} + 1120140 x^{7} + 393715 x^{6} - 7186536 x^{5} - 2922360 x^{4} + 23056460 x^{3} + 10264275 x^{2} - 28127715 x - 12948593$ Copy content Toggle raw display