Defining polynomial
$( x^{5} + 2 x + 1 )^{3} + \left(6 x^{2} + 6 x + 6\right) ( x^{5} + 2 x + 1 )^{2} + 12$
|
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $15$ |
Ramification index $e$: | $3$ |
Residue field degree $f$: | $5$ |
Discriminant exponent $c$: | $20$ |
Discriminant root field: | $\Q_{3}$ |
Root number: | $1$ |
$\Aut(K/\Q_{3})$: | $C_3$ |
This field is not Galois over $\Q_{3}.$ | |
Visible Artin slopes: | $[2]$ |
Visible Swan slopes: | $[1]$ |
Means: | $\langle\frac{2}{3}\rangle$ |
Rams: | $(1)$ |
Jump set: | undefined |
Roots of unity: | $242 = (3^{ 5 } - 1)$ |
Intermediate fields
3.5.1.0a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | 3.5.1.0a1.1 $\cong \Q_{3}(t)$ where $t$ is a root of
\( x^{5} + 2 x + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{3} + \left(6 t^{4} + 6 t^{3} + 3 t + 3\right) x^{2} + 21 \)
$\ \in\Q_{3}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z^2 + (t^4 + t^3 + 2 t^2 + 1)$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[2, 0]$ |
Invariants of the Galois closure
Galois degree: | $1215$ |
Galois group: | $C_3\wr C_5$ (as 15T36) |
Inertia group: | Intransitive group isomorphic to $C_3^5$ |
Wild inertia group: | $C_3^5$ |
Galois unramified degree: | $5$ |
Galois tame degree: | $1$ |
Galois Artin slopes: | $[2, 2, 2, 2, 2]$ |
Galois Swan slopes: | $[1,1,1,1,1]$ |
Galois mean slope: | $1.991769547325103$ |
Galois splitting model: |
$x^{15} - 105 x^{13} - 85 x^{12} + 4410 x^{11} + 7140 x^{10} - 90620 x^{9} - 224910 x^{8} + 847035 x^{7} + 3150235 x^{6} - 1451331 x^{5} - 16593675 x^{4} - 18750235 x^{3} + 659295 x^{2} + 6737745 x - 903707$
|