Properties

Label 3.3.6.18a4.2
Base \(\Q_{3}\)
Degree \(18\)
e \(6\)
f \(3\)
c \(18\)
Galois group not computed

Related objects

Downloads

Learn more

Defining polynomial

$( x^{3} + 2 x + 1 )^{6} + 3 x^{2} ( x^{3} + 2 x + 1 ) + 3$ Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $18$
Ramification index $e$: $6$
Residue field degree $f$: $3$
Discriminant exponent $c$: $18$
Discriminant root field: $\Q_{3}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{3})$: $C_1$
Visible Artin slopes:$[\frac{5}{4}]$
Visible Swan slopes:$[\frac{1}{4}]$
Means:$\langle\frac{1}{6}\rangle$
Rams:$(\frac{1}{2})$
Jump set:$[1, 4]$
Roots of unity:$78 = (3^{ 3 } - 1) \cdot 3$

Intermediate fields

$\Q_{3}(\sqrt{3\cdot 2})$, 3.3.1.0a1.1, 3.3.2.3a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:3.3.1.0a1.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{3} + 2 x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{6} + 3 t^{2} x + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^3 + 2$,$2 z + t^2$
Associated inertia:$1$,$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois degree: not computed
Galois group: not computed
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed