Properties

Label 3.3.5.12a1.1
Base \(\Q_{3}\)
Degree \(15\)
e \(5\)
f \(3\)
c \(12\)
Galois group $F_5\times C_3$ (as 15T8)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{3} + 2 x + 1 )^{5} + 3$ Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $15$
Ramification index $e$: $5$
Residue field degree $f$: $3$
Discriminant exponent $c$: $12$
Discriminant root field: $\Q_{3}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{3})$: $C_3$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$26 = (3^{ 3 } - 1)$

Intermediate fields

3.3.1.0a1.1, 3.1.5.4a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:3.3.1.0a1.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{3} + 2 x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{5} + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + 2 z^3 + z^2 + z + 2$
Associated inertia:$4$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $60$
Galois group: $C_3\times F_5$ (as 15T8)
Inertia group: Intransitive group isomorphic to $C_5$
Wild inertia group: $C_1$
Galois unramified degree: $12$
Galois tame degree: $5$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.8$
Galois splitting model: $x^{15} - 48 x^{10} - 513 x^{5} + 27$ Copy content Toggle raw display