Defining polynomial
| $( x^{3} + 2 x + 1 )^{5} + 3$ | 
Invariants
| Base field: | $\Q_{3}$ | 
| Degree $d$: | $15$ | 
| Ramification index $e$: | $5$ | 
| Residue field degree $f$: | $3$ | 
| Discriminant exponent $c$: | $12$ | 
| Discriminant root field: | $\Q_{3}(\sqrt{2})$ | 
| Root number: | $1$ | 
| $\Aut(K/\Q_{3})$: | $C_3$ | 
| This field is not Galois over $\Q_{3}.$ | |
| Visible Artin slopes: | $[\ ]$ | 
| Visible Swan slopes: | $[\ ]$ | 
| Means: | $\langle\ \rangle$ | 
| Rams: | $(\ )$ | 
| Jump set: | undefined | 
| Roots of unity: | $26 = (3^{ 3 } - 1)$ | 
Intermediate fields
| 3.3.1.0a1.1, 3.1.5.4a1.1 | 
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
| Unramified subfield: | 3.3.1.0a1.1 $\cong \Q_{3}(t)$ where $t$ is a root of 
    \( x^{3} + 2 x + 1 \) | 
| Relative Eisenstein polynomial: | \( x^{5} + 3 \)
    
    $\ \in\Q_{3}(t)[x]$ | 
Ramification polygon
| Residual polynomials: | $z^4 + 2 z^3 + z^2 + z + 2$ | 
| Associated inertia: | $4$ | 
| Indices of inseparability: | $[0]$ | 
Invariants of the Galois closure
| Galois degree: | $60$ | 
| Galois group: | $C_3\times F_5$ (as 15T8) | 
| Inertia group: | Intransitive group isomorphic to $C_5$ | 
| Wild inertia group: | $C_1$ | 
| Galois unramified degree: | $12$ | 
| Galois tame degree: | $5$ | 
| Galois Artin slopes: | $[\ ]$ | 
| Galois Swan slopes: | $[\ ]$ | 
| Galois mean slope: | $0.8$ | 
| Galois splitting model: | $x^{15} - 48 x^{10} - 513 x^{5} + 27$ | 
