Properties

Label 3.2.9.42a11.35
Base \(\Q_{3}\)
Degree \(18\)
e \(9\)
f \(2\)
c \(42\)
Galois group $(C_3\wr C_3)^2:(C_2\times C_4)$ (as 18T727)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 2 x + 2 )^{9} + \left(15 x + 24\right) ( x^{2} + 2 x + 2 )^{7} + 3 x ( x^{2} + 2 x + 2 )^{6} + 9 ( x^{2} + 2 x + 2 )^{5} + 9 ( x^{2} + 2 x + 2 )^{4} + 3$ Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $18$
Ramification index $e$: $9$
Residue field degree $f$: $2$
Discriminant exponent $c$: $42$
Discriminant root field: $\Q_{3}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{3})$: $C_1$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[2, \frac{17}{6}]$
Visible Swan slopes:$[1,\frac{11}{6}]$
Means:$\langle\frac{2}{3}, \frac{13}{9}\rangle$
Rams:$(1, \frac{7}{2})$
Jump set:undefined
Roots of unity:$8 = (3^{ 2 } - 1)$

Intermediate fields

$\Q_{3}(\sqrt{2})$, 3.2.3.8a3.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} + 2 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{9} + 18 x^{7} + 3 t x^{6} + 18 x^{5} + 9 x^{4} + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^6 + 2 t$,$2 t z + (2 t + 2)$
Associated inertia:$2$,$1$
Indices of inseparability:$[13, 6, 0]$

Invariants of the Galois closure

Galois degree: $52488$
Galois group: $(C_3\wr C_3)^2:(C_2\times C_4)$ (as 18T727)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed