Properties

Label 3.2.9.38b3.47
Base \(\Q_{3}\)
Degree \(18\)
e \(9\)
f \(2\)
c \(38\)
Galois group not computed

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 2 x + 2 )^{9} + 9 x ( x^{2} + 2 x + 2 )^{5} + \left(18 x + 9\right) ( x^{2} + 2 x + 2 )^{4} + 6 ( x^{2} + 2 x + 2 )^{3} + 18 x ( x^{2} + 2 x + 2 )^{2} + 3$ Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $18$
Ramification index $e$: $9$
Residue field degree $f$: $2$
Discriminant exponent $c$: $38$
Discriminant root field: $\Q_{3}$
Root number: $-1$
$\Aut(K/\Q_{3})$: $C_1$
Visible Artin slopes:$[\frac{3}{2}, \frac{8}{3}]$
Visible Swan slopes:$[\frac{1}{2},\frac{5}{3}]$
Means:$\langle\frac{1}{3}, \frac{11}{9}\rangle$
Rams:$(\frac{1}{2}, 4)$
Jump set:undefined
Roots of unity:$8 = (3^{ 2 } - 1)$

Intermediate fields

$\Q_{3}(\sqrt{2})$, 3.1.3.3a1.2, 3.2.3.6a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{2} + 2 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{9} + \left(9 t + 9\right) x^{5} + \left(18 t + 9\right) x^{4} + 6 x^{3} + \left(9 t + 18\right) x^{2} + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^3 + (t + 1)$,$(t + 1) z^2 + (2 t + 1)$
Associated inertia:$1$,$2$
Indices of inseparability:$[11, 3, 0]$

Invariants of the Galois closure

Galois degree: not computed
Galois group: not computed
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed