Defining polynomial
$( x^{2} + 2 x + 2 )^{9} + 3 ( x^{2} + 2 x + 2 )^{8} + 3 ( x^{2} + 2 x + 2 )^{3} + 9 ( x^{2} + 2 x + 2 ) + 3$
|
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $18$ |
Ramification index $e$: | $9$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $32$ |
Discriminant root field: | $\Q_{3}(\sqrt{2})$ |
Root number: | $1$ |
$\Aut(K/\Q_{3})$: | $C_2$ |
Visible Artin slopes: | $[\frac{3}{2}, \frac{13}{6}]$ |
Visible Swan slopes: | $[\frac{1}{2},\frac{7}{6}]$ |
Means: | $\langle\frac{1}{3}, \frac{8}{9}\rangle$ |
Rams: | $(\frac{1}{2}, \frac{5}{2})$ |
Jump set: | undefined |
Roots of unity: | $8 = (3^{ 2 } - 1)$ |
Intermediate fields
$\Q_{3}(\sqrt{2})$, 3.1.3.3a1.1, 3.2.3.6a2.1, 3.1.9.16b1.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of
\( x^{2} + 2 x + 2 \)
|
Relative Eisenstein polynomial: |
\( x^{9} + 3 x^{8} + 3 x^{3} + 9 x + 3 \)
$\ \in\Q_{3}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z^3 + (2 t + 2)$,$(2 t + 2) z + 1$ |
Associated inertia: | $1$,$1$ |
Indices of inseparability: | $[8, 3, 0]$ |
Invariants of the Galois closure
Galois degree: | not computed |
Galois group: | not computed |
Inertia group: | not computed |
Wild inertia group: | not computed |
Galois unramified degree: | not computed |
Galois tame degree: | not computed |
Galois Artin slopes: | not computed |
Galois Swan slopes: | not computed |
Galois mean slope: | not computed |
Galois splitting model: | not computed |