Properties

Label 3.12.21.52
Base \(\Q_{3}\)
Degree \(12\)
e \(12\)
f \(1\)
c \(21\)
Galois group $C_3^3:D_{12}$ (as 12T169)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} + 3 x^{11} + 3 x^{10} + 3 x^{6} + 18 x^{3} + 18 x + 24\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $12$
Ramification exponent $e$: $12$
Residue field degree $f$: $1$
Discriminant exponent $c$: $21$
Discriminant root field: $\Q_{3}(\sqrt{3\cdot 2})$
Root number: $i$
$\card{ \Aut(K/\Q_{ 3 }) }$: $1$
This field is not Galois over $\Q_{3}.$
Visible slopes:$[9/4]$

Intermediate fields

$\Q_{3}(\sqrt{3})$, 3.4.3.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{12} + 3 x^{11} + 3 x^{10} + 3 x^{6} + 18 x^{3} + 18 x + 24 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{2} + 1$,$z^{9} + z^{6} + 1$
Associated inertia:$2$,$2$
Indices of inseparability:$[10, 0]$

Invariants of the Galois closure

Galois group:$C_3^3:D_{12}$ (as 12T169)
Inertia group:$C_3\wr C_4$ (as 12T131)
Wild inertia group:$C_3^4$
Unramified degree:$2$
Tame degree:$4$
Wild slopes:$[3/2, 2, 9/4, 9/4]$
Galois mean slope:$79/36$
Galois splitting model: $x^{12} - 8 x^{9} + 12 x^{6} - 8 x^{3} + 4$ Copy content Toggle raw display