Properties

Label 3.12.16.17
Base \(\Q_{3}\)
Degree \(12\)
e \(3\)
f \(4\)
c \(16\)
Galois group $C_3^2:C_{12}$ (as 12T73)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{12} - 24 x^{11} + 306 x^{10} - 2580 x^{9} + 22869 x^{8} - 7236 x^{7} + 99846 x^{6} - 4536 x^{5} + 179658 x^{4} + 3996 x^{3} + 191808 x^{2} + 110889\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $12$
Ramification exponent $e$: $3$
Residue field degree $f$: $4$
Discriminant exponent $c$: $16$
Discriminant root field: $\Q_{3}(\sqrt{2})$
Root number: $1$
$\card{ \Aut(K/\Q_{ 3 }) }$: $3$
This field is not Galois over $\Q_{3}.$
Visible slopes:$[2]$

Intermediate fields

$\Q_{3}(\sqrt{2})$, 3.4.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.4.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{4} + 2 x^{3} + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{3} + \left(6 t^{3} + 6 t^{2} + 6 t + 3\right) x^{2} + 18 t^{3} + 18 t^{2} + 21 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{2} + 2t^{3} + 2t^{2} + 2t + 1$
Associated inertia:$1$
Indices of inseparability:$[2, 0]$

Invariants of the Galois closure

Galois group:$C_3^2:C_{12}$ (as 12T73)
Inertia group:Intransitive group isomorphic to $C_3^3$
Wild inertia group:$C_3^3$
Unramified degree:$4$
Tame degree:$1$
Wild slopes:$[2, 2, 2]$
Galois mean slope:$52/27$
Galois splitting model: $x^{12} - 12 x^{10} - 12 x^{9} + 18 x^{8} + 36 x^{7} + 130 x^{6} + 324 x^{5} + 405 x^{4} + 432 x^{3} + 522 x^{2} + 396 x + 119$ Copy content Toggle raw display