Properties

Label 3.1.21.39a1.25
Base \(\Q_{3}\)
Degree \(21\)
e \(21\)
f \(1\)
c \(39\)
Galois group $C_3^6.(S_3\times F_7)$ (as 21T107)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{21} + 3 x^{19} + 18 x^{5} + 18 x^{4} + 3\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $21$
Ramification index $e$: $21$
Residue field degree $f$: $1$
Discriminant exponent $c$: $39$
Discriminant root field: $\Q_{3}(\sqrt{3})$
Root number: $i$
$\Aut(K/\Q_{3})$: $C_1$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[\frac{33}{14}]$
Visible Swan slopes:$[\frac{19}{14}]$
Means:$\langle\frac{19}{21}\rangle$
Rams:$(\frac{19}{2})$
Jump set:undefined
Roots of unity:$2 = (3 - 1)$

Intermediate fields

3.1.7.6a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{21} + 3 x^{19} + 18 x^{5} + 18 x^{4} + 3 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{18} + z^{15} + 2 z^9 + 2 z^6 + 1$,$z + 2$
Associated inertia:$6$,$1$
Indices of inseparability:$[19, 0]$

Invariants of the Galois closure

Galois degree: $183708$
Galois group: $C_3^6.(S_3\times F_7)$ (as 21T107)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed