Defining polynomial
\(x^{21} + 3 x^{19} + 18 x^{5} + 18 x^{4} + 3\)
|
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $21$ |
Ramification index $e$: | $21$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $39$ |
Discriminant root field: | $\Q_{3}(\sqrt{3})$ |
Root number: | $i$ |
$\Aut(K/\Q_{3})$: | $C_1$ |
This field is not Galois over $\Q_{3}.$ | |
Visible Artin slopes: | $[\frac{33}{14}]$ |
Visible Swan slopes: | $[\frac{19}{14}]$ |
Means: | $\langle\frac{19}{21}\rangle$ |
Rams: | $(\frac{19}{2})$ |
Jump set: | undefined |
Roots of unity: | $2 = (3 - 1)$ |
Intermediate fields
3.1.7.6a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{3}$ |
Relative Eisenstein polynomial: |
\( x^{21} + 3 x^{19} + 18 x^{5} + 18 x^{4} + 3 \)
|
Ramification polygon
Residual polynomials: | $z^{18} + z^{15} + 2 z^9 + 2 z^6 + 1$,$z + 2$ |
Associated inertia: | $6$,$1$ |
Indices of inseparability: | $[19, 0]$ |
Invariants of the Galois closure
Galois degree: | $183708$ |
Galois group: | $C_3^6.(S_3\times F_7)$ (as 21T107) |
Inertia group: | not computed |
Wild inertia group: | not computed |
Galois unramified degree: | not computed |
Galois tame degree: | not computed |
Galois Artin slopes: | not computed |
Galois Swan slopes: | not computed |
Galois mean slope: | not computed |
Galois splitting model: | not computed |