Properties

Label 3.1.18.50a2.6
Base \(\Q_{3}\)
Degree \(18\)
e \(18\)
f \(1\)
c \(50\)
Galois group $C_3^5:\SOPlus(4,2)$ (as 18T614)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{18} + 3 x^{15} + 54 x^{6} + 27 x^{5} + 3\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $18$
Ramification index $e$: $18$
Residue field degree $f$: $1$
Discriminant exponent $c$: $50$
Discriminant root field: $\Q_{3}(\sqrt{2})$
Root number: $1$
$\Aut(K/\Q_{3})$: $C_3$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[\frac{9}{4}, \frac{10}{3}]$
Visible Swan slopes:$[\frac{5}{4},\frac{7}{3}]$
Means:$\langle\frac{5}{6}, \frac{11}{6}\rangle$
Rams:$(\frac{5}{2}, 9)$
Jump set:$[1, 7, 25]$
Roots of unity:$6 = (3 - 1) \cdot 3$

Intermediate fields

$\Q_{3}(\sqrt{3\cdot 2})$, 3.1.6.10a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{18} + 3 x^{15} + 54 x^{6} + 27 x^{5} + 3 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^9 + 2$,$2 z^3 + 1$,$z^2 + 2$
Associated inertia:$1$,$1$,$1$
Indices of inseparability:$[33, 15, 0]$

Invariants of the Galois closure

Galois degree: $17496$
Galois group: $C_3^5:\SOPlus(4,2)$ (as 18T614)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed