Properties

Label 3.1.18.37d2.85
Base \(\Q_{3}\)
Degree \(18\)
e \(18\)
f \(1\)
c \(37\)
Galois group not computed

Related objects

Downloads

Learn more

Defining polynomial

\(x^{18} + 6 x^{15} + 3 x^{12} + 9 x^{5} + 9 x^{2} + 15\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $18$
Ramification index $e$: $18$
Residue field degree $f$: $1$
Discriminant exponent $c$: $37$
Discriminant root field: $\Q_{3}(\sqrt{3})$
Root number: $-i$
$\Aut(K/\Q_{3})$: $C_3$
Visible Artin slopes:$[2, \frac{7}{3}]$
Visible Swan slopes:$[1,\frac{4}{3}]$
Means:$\langle\frac{2}{3}, \frac{10}{9}\rangle$
Rams:$(2, 4)$
Jump set:undefined
Roots of unity:$2 = (3 - 1)$

Intermediate fields

$\Q_{3}(\sqrt{3})$, 3.1.6.9a1.11

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{18} + 6 x^{15} + 3 x^{12} + 9 x^{5} + 9 x^{2} + 15 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^9 + 2$,$2 z^6 + 1$,$z^2 + 2$
Associated inertia:$1$,$1$,$1$
Indices of inseparability:$[20, 12, 0]$

Invariants of the Galois closure

Galois degree: not computed
Galois group: not computed
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed