Defining polynomial
\(x^{18} + 3 x^{14} + 3\)
|
Invariants
Base field: | $\Q_{3}$ |
Degree $d$: | $18$ |
Ramification index $e$: | $18$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $31$ |
Discriminant root field: | $\Q_{3}(\sqrt{3\cdot 2})$ |
Root number: | $-i$ |
$\Aut(K/\Q_{3})$: | $C_2$ |
This field is not Galois over $\Q_{3}.$ | |
Visible Artin slopes: | $[\frac{15}{8}, \frac{15}{8}]$ |
Visible Swan slopes: | $[\frac{7}{8},\frac{7}{8}]$ |
Means: | $\langle\frac{7}{12}, \frac{7}{9}\rangle$ |
Rams: | $(\frac{7}{4}, \frac{7}{4})$ |
Jump set: | $[1, 7, 23]$ |
Roots of unity: | $6 = (3 - 1) \cdot 3$ |
Intermediate fields
$\Q_{3}(\sqrt{3\cdot 2})$, 3.1.9.15a1.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{3}$ |
Relative Eisenstein polynomial: |
\( x^{18} + 3 x^{14} + 3 \)
|
Ramification polygon
Residual polynomials: | $z^9 + 2$,$2 z^2 + 1$ |
Associated inertia: | $1$,$1$ |
Indices of inseparability: | $[14, 14, 0]$ |
Invariants of the Galois closure
Galois degree: | $144$ |
Galois group: | $F_9:C_2$ (as 18T73) |
Inertia group: | not computed |
Wild inertia group: | not computed |
Galois unramified degree: | not computed |
Galois tame degree: | not computed |
Galois Artin slopes: | not computed |
Galois Swan slopes: | not computed |
Galois mean slope: | not computed |
Galois splitting model: | not computed |