Properties

Label 3.1.18.31a1.1
Base \(\Q_{3}\)
Degree \(18\)
e \(18\)
f \(1\)
c \(31\)
Galois group $F_9:C_2$ (as 18T73)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{18} + 3 x^{14} + 3\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $18$
Ramification index $e$: $18$
Residue field degree $f$: $1$
Discriminant exponent $c$: $31$
Discriminant root field: $\Q_{3}(\sqrt{3\cdot 2})$
Root number: $-i$
$\Aut(K/\Q_{3})$: $C_2$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[\frac{15}{8}, \frac{15}{8}]$
Visible Swan slopes:$[\frac{7}{8},\frac{7}{8}]$
Means:$\langle\frac{7}{12}, \frac{7}{9}\rangle$
Rams:$(\frac{7}{4}, \frac{7}{4})$
Jump set:$[1, 7, 23]$
Roots of unity:$6 = (3 - 1) \cdot 3$

Intermediate fields

$\Q_{3}(\sqrt{3\cdot 2})$, 3.1.9.15a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{18} + 3 x^{14} + 3 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^9 + 2$,$2 z^2 + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[14, 14, 0]$

Invariants of the Galois closure

Galois degree: $144$
Galois group: $F_9:C_2$ (as 18T73)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed