Properties

Label 3.1.18.27c2.7
Base \(\Q_{3}\)
Degree \(18\)
e \(18\)
f \(1\)
c \(27\)
Galois group not computed

Related objects

Downloads

Learn more

Defining polynomial

\(x^{18} + 6 x^{10} + 6 x^{6} + 6\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $18$
Ramification index $e$: $18$
Residue field degree $f$: $1$
Discriminant exponent $c$: $27$
Discriminant root field: $\Q_{3}(\sqrt{3})$
Root number: $-i$
$\#$ $\Aut(K/\Q_{3})$: $6$
Visible Artin slopes:$[\frac{3}{2}, \frac{5}{3}]$
Visible Swan slopes:$[\frac{1}{2},\frac{2}{3}]$
Means:$\langle\frac{1}{3}, \frac{5}{9}\rangle$
Rams:$(1, 2)$
Jump set:undefined
Roots of unity:$2 = (3 - 1)$

Intermediate fields

$\Q_{3}(\sqrt{3})$, 3.1.3.3a1.2 x3, 3.1.6.7a1.3, 3.1.9.13b2.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{18} + 6 x^{10} + 6 x^{6} + 6 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^9 + 2$,$2 z^6 + 1$,$z^2 + 2$
Associated inertia:$1$,$1$,$1$
Indices of inseparability:$[10, 6, 0]$

Invariants of the Galois closure

Galois degree: not computed
Galois group: not computed
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed