Properties

Label 3.1.18.27b2.14
Base \(\Q_{3}\)
Degree \(18\)
e \(18\)
f \(1\)
c \(27\)
Galois group $D_9^2:C_6$ (as 18T338)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{18} + 3 x^{13} + 3 x^{11} + 6 x^{10} + 3 x^{3} + 6\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $18$
Ramification index $e$: $18$
Residue field degree $f$: $1$
Discriminant exponent $c$: $27$
Discriminant root field: $\Q_{3}(\sqrt{3})$
Root number: $-i$
$\Aut(K/\Q_{3})$: $C_1$
This field is not Galois over $\Q_{3}.$
Visible Artin slopes:$[\frac{5}{4}, \frac{7}{4}]$
Visible Swan slopes:$[\frac{1}{4},\frac{3}{4}]$
Means:$\langle\frac{1}{6}, \frac{5}{9}\rangle$
Rams:$(\frac{1}{2}, \frac{7}{2})$
Jump set:undefined
Roots of unity:$2 = (3 - 1)$

Intermediate fields

$\Q_{3}(\sqrt{3})$, 3.1.6.6a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{3}$
Relative Eisenstein polynomial: \( x^{18} + 3 x^{13} + 3 x^{11} + 6 x^{10} + 3 x^{3} + 6 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^9 + 2$,$2 z^3 + 1$,$z + 2$
Associated inertia:$1$,$1$,$1$
Indices of inseparability:$[10, 3, 0]$

Invariants of the Galois closure

Galois degree: $1944$
Galois group: $D_9^2:C_6$ (as 18T338)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: not computed
Galois tame degree: not computed
Galois Artin slopes: not computed
Galois Swan slopes: not computed
Galois mean slope: not computed
Galois splitting model:not computed