Defining polynomial
$( x^{5} + x^{2} + 1 )^{4} + \left(2 x^{2} + 2\right) ( x^{5} + x^{2} + 1 )^{3} + 2 ( x^{5} + x^{2} + 1 )^{2} + 4 x + 6$
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $20$ |
Ramification index $e$: | $4$ |
Residue field degree $f$: | $5$ |
Discriminant exponent $c$: | $30$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $-1$ |
$\#$ $\Aut(K/\Q_{2})$: | $4$ |
Visible Artin slopes: | $[2, 2]$ |
Visible Swan slopes: | $[1,1]$ |
Means: | $\langle\frac{1}{2}, \frac{3}{4}\rangle$ |
Rams: | $(1, 1)$ |
Jump set: | $[1, 2, 7]$ |
Roots of unity: | $62 = (2^{ 5 } - 1) \cdot 2$ |
Intermediate fields
2.5.1.0a1.1, 2.5.2.10a2.2, 2.5.2.10a4.2, 2.5.2.10a6.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | 2.5.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{5} + x^{2} + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{4} + \left(2 t^{4} + 2 t^{3} + 2 t\right) x^{3} + 2 x^{2} + 4 t + 6 \)
$\ \in\Q_{2}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z^3 + (t^3 + t^2 + 1) z + (t^4 + t + 1)$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[3, 2, 0]$ |
Invariants of the Galois closure
Galois degree: | not computed |
Galois group: | not computed |
Inertia group: | not computed |
Wild inertia group: | not computed |
Galois unramified degree: | not computed |
Galois tame degree: | not computed |
Galois Artin slopes: | not computed |
Galois Swan slopes: | not computed |
Galois mean slope: | not computed |
Galois splitting model: | not computed |