Properties

Label 2.4.4.32b39.5
Base \(\Q_{2}\)
Degree \(16\)
e \(4\)
f \(4\)
c \(32\)
Galois group $C_2^5:C_4$ (as 16T273)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{4} + x + 1 )^{4} + 6 x^{2} ( x^{4} + x + 1 )^{3} + 2 x^{3} ( x^{4} + x + 1 )^{2} + \left(4 x^{3} + 4 x\right) ( x^{4} + x + 1 ) + 8 x^{3} + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $4$
Residue field degree $f$: $4$
Discriminant exponent $c$: $32$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2^2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 3]$
Visible Swan slopes:$[1,2]$
Means:$\langle\frac{1}{2}, \frac{5}{4}\rangle$
Rams:$(1, 3)$
Jump set:$[1, 3, 7]$
Roots of unity:$30 = (2^{ 4 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.4.1.0a1.1, 2.2.2.6a1.3, 2.2.2.6a1.4, 2.4.2.8a4.2, 2.4.2.12a1.7, 2.4.2.12a1.11

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:2.4.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{4} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 2 t^{3} x^{2} + \left(4 t^{3} + 4 t\right) x + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + t^3$,$t^3 z + (t^3 + t)$
Associated inertia:$1$,$1$
Indices of inseparability:$[5, 2, 0]$

Invariants of the Galois closure

Galois degree: $128$
Galois group: $C_2^5:C_4$ (as 16T273)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: $4$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 2, 2, 3]$
Galois Swan slopes: $[1,1,1,1,2]$
Galois mean slope: $2.4375$
Galois splitting model:not computed