$( x^{3} + x + 1 )^{4} + \left(8 x + 8\right) ( x^{3} + x + 1 )^{3} + 4 ( x^{3} + x + 1 )^{2} + \left(8 x^{2} + 8\right) ( x^{3} + x + 1 ) + 2$
|
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
Unramified subfield: | 2.3.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{3} + x + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{4} + \left(8 t + 8\right) x^{3} + 4 x^{2} + \left(8 t^{2} + 8 t + 8\right) x + 2 \)
$\ \in\Q_{2}(t)[x]$
|
Galois degree: |
$384$
|
Galois group: |
$C_2\wr C_6$ (as 12T134)
|
Inertia group: |
Intransitive group isomorphic to $C_2^3\wr C_2$
|
Wild inertia group: |
$C_2^3\wr C_2$
|
Galois unramified degree: |
$3$
|
Galois tame degree: |
$1$
|
Galois Artin slopes: |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]$
|
Galois Swan slopes: |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3]$
|
Galois mean slope: |
$3.609375$
|
Galois splitting model: | $x^{12} - 12 x^{10} + 34 x^{8} + 48 x^{6} - 280 x^{4} + 224 x^{2} + 56$ |