$( x^{3} + x + 1 )^{4} + \left(4 x + 4\right) ( x^{3} + x + 1 )^{3} + 12 x^{2} ( x^{3} + x + 1 )^{2} + \left(8 x^{2} + 8\right) ( x^{3} + x + 1 ) + 10$
|
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| Unramified subfield: | 2.3.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{3} + x + 1 \)
|
| Relative Eisenstein polynomial: |
\( x^{4} + \left(4 t^{2} + 4 t + 4\right) x^{3} + 4 t x^{2} + 8 x + 10 \)
$\ \in\Q_{2}(t)[x]$
|
| Galois degree: |
$192$
|
| Galois group: |
$C_2^4:A_4$ (as 12T87)
|
| Inertia group: |
Intransitive group isomorphic to $C_2^3:D_4$
|
| Wild inertia group: |
$C_2^3:D_4$
|
| Galois unramified degree: |
$3$
|
| Galois tame degree: |
$1$
|
| Galois Artin slopes: |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}]$
|
| Galois Swan slopes: |
$[1,1,1,2,\frac{5}{2},\frac{5}{2}]$
|
| Galois mean slope: |
$3.21875$
|
| Galois splitting model: | $x^{12} - 10 x^{10} + 7 x^{8} + 74 x^{6} - 8 x^{4} - 64 x^{2} + 25$ |