Defining polynomial
| $( x^{3} + x + 1 )^{4} + \left(4 x + 4\right) ( x^{3} + x + 1 )^{3} + 4 x^{2} ( x^{3} + x + 1 )^{2} + 10$ | 
Invariants
| Base field: | $\Q_{2}$ | 
| Degree $d$: | $12$ | 
| Ramification index $e$: | $4$ | 
| Residue field degree $f$: | $3$ | 
| Discriminant exponent $c$: | $30$ | 
| Discriminant root field: | $\Q_{2}$ | 
| Root number: | $-1$ | 
| $\Aut(K/\Q_{2})$: | $C_2$ | 
| This field is not Galois over $\Q_{2}.$ | |
| Visible Artin slopes: | $[3, \frac{7}{2}]$ | 
| Visible Swan slopes: | $[2,\frac{5}{2}]$ | 
| Means: | $\langle1, \frac{7}{4}\rangle$ | 
| Rams: | $(2, 3)$ | 
| Jump set: | $[1, 3, 7]$ | 
| Roots of unity: | $14 = (2^{ 3 } - 1) \cdot 2$ | 
Intermediate fields
| $\Q_{2}(\sqrt{2\cdot 5})$, 2.3.1.0a1.1, 2.3.2.9a1.6 | 
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
| Unramified subfield: | 2.3.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of 
    \( x^{3} + x + 1 \) | 
| Relative Eisenstein polynomial: | \( x^{4} + \left(4 t^{2} + 4 t + 4\right) x^{3} + 12 t x^{2} + 8 t x + 10 \)
    
    $\ \in\Q_{2}(t)[x]$ | 
Ramification polygon
| Residual polynomials: | $z^2 + (t + 1)$,$(t + 1) z + (t + 1)$ | 
| Associated inertia: | $1$,$1$ | 
| Indices of inseparability: | $[7, 4, 0]$ | 
Invariants of the Galois closure
| Galois degree: | $192$ | 
| Galois group: | $C_2^4:A_4$ (as 12T87) | 
| Inertia group: | Intransitive group isomorphic to $C_2^2\wr C_2$ | 
| Wild inertia group: | $C_2^2\wr C_2$ | 
| Galois unramified degree: | $6$ | 
| Galois tame degree: | $1$ | 
| Galois Artin slopes: | $[2, 2, 3, \frac{7}{2}, \frac{7}{2}]$ | 
| Galois Swan slopes: | $[1,1,2,\frac{5}{2},\frac{5}{2}]$ | 
| Galois mean slope: | $3.1875$ | 
| Galois splitting model: | $x^{12} + 10 x^{10} + 7 x^{8} - 74 x^{6} - 8 x^{4} + 64 x^{2} + 25$ | 
