$( x^{2} + x + 1 )^{8} + \left(16 x + 8\right) ( x^{2} + x + 1 )^{7} + 8 x ( x^{2} + x + 1 )^{6} + 16 x ( x^{2} + x + 1 ) + 16 x + 2$
|
Base field: | $\Q_{2}$
|
Degree $d$: | $16$ |
Ramification index $e$: | $8$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $62$ |
Discriminant root field: | $\Q_{2}(\sqrt{-5})$ |
Root number: | $-i$ |
$\Aut(K/\Q_{2})$:
|
$C_2$ |
This field is not Galois over $\Q_{2}.$ |
Visible Artin slopes: | $[3, 4, 5]$ |
Visible Swan slopes: | $[2,3,4]$ |
Means: | $\langle1, 2, 3\rangle$ |
Rams: | $(2, 4, 8)$ |
Jump set: | $[1, 3, 7, 15]$ |
Roots of unity: | $6 = (2^{ 2 } - 1) \cdot 2$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
Unramified subfield: | $\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{2} + x + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{8} + 16 x^{7} + 8 t x^{6} + 16 t x^{5} + 16 t x^{3} + 16 t x + 16 t + 2 \)
$\ \in\Q_{2}(t)[x]$
|
Galois degree: |
$2048$
|
Galois group: |
$C_2^7.(C_2\times D_4)$ (as 16T1481)
|
Inertia group: |
intransitive group not computed
|
Wild inertia group: |
not computed
|
Galois unramified degree: |
$2$
|
Galois tame degree: |
$1$
|
Galois Artin slopes: |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]$
|
Galois Swan slopes: |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]$
|
Galois mean slope: |
$4.708984375$
|
Galois splitting model: | $x^{16} + 16 x^{14} + 120 x^{12} + 472 x^{10} + 958 x^{8} + 528 x^{6} + 72 x^{4} - 432 x^{2} + 108$ |