$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{6} + 16 ( x^{2} + x + 1 )^{5} + \left(16 x + 16\right) ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 16 x ( x^{2} + x + 1 ) + 2$
|
| Base field: | $\Q_{2}$
|
| Degree $d$: | $16$ |
| Ramification index $e$: | $8$ |
| Residue field degree $f$: | $2$ |
| Discriminant exponent $c$: | $62$ |
| Discriminant root field: | $\Q_{2}(\sqrt{-5})$ |
| Root number: | $-i$ |
| $\Aut(K/\Q_{2})$:
|
$C_2$ |
| This field is not Galois over $\Q_{2}.$ |
| Visible Artin slopes: | $[3, 4, 5]$ |
| Visible Swan slopes: | $[2,3,4]$ |
| Means: | $\langle1, 2, 3\rangle$ |
| Rams: | $(2, 4, 8)$ |
| Jump set: | $[1, 3, 7, 15]$ |
| Roots of unity: | $6 = (2^{ 2 } - 1) \cdot 2$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| Unramified subfield: | $\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{2} + x + 1 \)
|
| Relative Eisenstein polynomial: |
\( x^{8} + 16 t x^{7} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 8 x^{2} + 16 t x + 2 \)
$\ \in\Q_{2}(t)[x]$
|