$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{5} + 28 x ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 2$
|
Base field: | $\Q_{2}$
|
Degree $d$: | $16$ |
Ramification index $e$: | $8$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $56$ |
Discriminant root field: | $\Q_{2}(\sqrt{5})$ |
Root number: | $-1$ |
$\Aut(K/\Q_{2})$:
|
$C_4$ |
This field is not Galois over $\Q_{2}.$ |
Visible Artin slopes: | $[3, \frac{7}{2}, \frac{9}{2}]$ |
Visible Swan slopes: | $[2,\frac{5}{2},\frac{7}{2}]$ |
Means: | $\langle1, \frac{7}{4}, \frac{21}{8}\rangle$ |
Rams: | $(2, 3, 7)$ |
Jump set: | $[1, 3, 7, 15]$ |
Roots of unity: | $6 = (2^{ 2 } - 1) \cdot 2$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
Unramified subfield: | $\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{2} + x + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{8} + \left(8 t + 8\right) x^{7} + 4 x^{6} + 8 x^{5} + 20 t x^{4} + 8 t x^{2} + 2 \)
$\ \in\Q_{2}(t)[x]$
|
Galois degree: |
$1024$
|
Galois group: |
$D_4^2:\OD_{16}$ (as 16T1120)
|
Inertia group: |
Intransitive group isomorphic to $C_4^2.C_2^4$
|
Wild inertia group: |
$C_4^2.C_2^4$
|
Galois unramified degree: |
$4$
|
Galois tame degree: |
$1$
|
Galois Artin slopes: |
$[2, 2, 2, 3, 3, \frac{7}{2}, \frac{15}{4}, \frac{9}{2}]$
|
Galois Swan slopes: |
$[1,1,1,2,2,\frac{5}{2},\frac{11}{4},\frac{7}{2}]$
|
Galois mean slope: |
$3.9609375$
|
Galois splitting model: |
$x^{16} - 16 x^{14} + 94 x^{12} - 320 x^{10} + 385 x^{8} + 440 x^{6} - 2430 x^{4} + 1600 x^{2} + 125$
|