$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{5} + 2 ( x^{2} + x + 1 )^{4} + 16 x ( x^{2} + x + 1 )^{3} + 2$
|
Base field: | $\Q_{2}$
|
Degree $d$: | $16$ |
Ramification index $e$: | $8$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $54$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$:
|
$C_2^2$ |
This field is not Galois over $\Q_{2}.$ |
Visible Artin slopes: | $[2, \frac{7}{2}, \frac{9}{2}]$ |
Visible Swan slopes: | $[1,\frac{5}{2},\frac{7}{2}]$ |
Means: | $\langle\frac{1}{2}, \frac{3}{2}, \frac{5}{2}\rangle$ |
Rams: | $(1, 4, 8)$ |
Jump set: | $[1, 5, 13, 21]$ |
Roots of unity: | $12 = (2^{ 2 } - 1) \cdot 2^{ 2 }$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
Unramified subfield: | $\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{2} + x + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{8} + 8 t x^{7} + \left(4 t + 4\right) x^{6} + \left(8 t + 8\right) x^{5} + \left(24 t + 2\right) x^{4} + 16 t x + 2 \)
$\ \in\Q_{2}(t)[x]$
|
Galois degree: |
$128$
|
Galois group: |
$C_2\wr D_4$ (as 16T393)
|
Inertia group: |
Intransitive group isomorphic to $D_4:D_4$
|
Wild inertia group: |
$D_4:D_4$
|
Galois unramified degree: |
$2$
|
Galois tame degree: |
$1$
|
Galois Artin slopes: |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}]$
|
Galois Swan slopes: |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{7}{2}]$
|
Galois mean slope: |
$3.84375$
|
Galois splitting model: |
$x^{16} + 4 x^{12} - 144 x^{8} + 14904 x^{4} + 236196$
|