Properties

Label 2.2.8.44d14.154
Base \(\Q_{2}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(44\)
Galois group $C_2^3.D_4$ (as 16T153)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{8} + 4 x ( x^{2} + x + 1 )^{7} + \left(4 x + 6\right) ( x^{2} + x + 1 )^{6} + \left(4 x + 6\right) ( x^{2} + x + 1 )^{5} + \left(2 x + 8\right) ( x^{2} + x + 1 )^{4} + 12 ( x^{2} + x + 1 )^{3} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{2} + 8 x ( x^{2} + x + 1 ) + 8 x + 6$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $44$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_4$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 3, \frac{7}{2}]$
Visible Swan slopes:$[1,2,\frac{5}{2}]$
Means:$\langle\frac{1}{2}, \frac{5}{4}, \frac{15}{8}\rangle$
Rams:$(1, 3, 5)$
Jump set:$[1, 3, 7, 15]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.2.2.4a2.2, 2.2.2.6a1.2, 2.2.2.6a1.4, 2.2.4.16b5.10

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + \left(4 t + 4\right) x^{7} + 4 t x^{6} + 2 t x^{4} + \left(4 t + 4\right) x^{2} + 8 x + 8 t + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + t$,$t z^2 + (t + 1)$,$(t + 1) z + (t + 1)$
Associated inertia:$1$,$1$,$1$
Indices of inseparability:$[15, 10, 4, 0]$

Invariants of the Galois closure

Galois degree: $64$
Galois group: $C_2^3.D_4$ (as 16T153)
Inertia group: not computed
Wild inertia group: not computed
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 3, \frac{7}{2}, \frac{7}{2}]$
Galois Swan slopes: $[1,1,2,\frac{5}{2},\frac{5}{2}]$
Galois mean slope: $3.1875$
Galois splitting model:not computed