Defining polynomial
$( x^{2} + x + 1 )^{8} + \left(4 x + 6\right) ( x^{2} + x + 1 )^{6} + \left(4 x + 6\right) ( x^{2} + x + 1 )^{5} + 2 x ( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{3} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{2} + 8 x ( x^{2} + x + 1 ) + 8 x + 2$
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $16$ |
Ramification index $e$: | $8$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $44$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$: | $C_2^2$ |
This field is not Galois over $\Q_{2}.$ | |
Visible Artin slopes: | $[2, 3, \frac{7}{2}]$ |
Visible Swan slopes: | $[1,2,\frac{5}{2}]$ |
Means: | $\langle\frac{1}{2}, \frac{5}{4}, \frac{15}{8}\rangle$ |
Rams: | $(1, 3, 5)$ |
Jump set: | $[1, 3, 7, 15]$ |
Roots of unity: | $6 = (2^{ 2 } - 1) \cdot 2$ |
Intermediate fields
$\Q_{2}(\sqrt{5})$, 2.2.2.4a2.1, 2.2.2.6a1.6, 2.2.2.6a1.3, 2.2.4.16b5.4, 2.2.4.20a2.14, 2.2.4.20a2.13 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{2} + x + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{8} + 4 x^{7} + 4 t x^{6} + 2 t x^{4} + \left(4 t + 4\right) x^{2} + 8 t x + 8 t + 6 \)
$\ \in\Q_{2}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z^4 + t$,$t z^2 + (t + 1)$,$(t + 1) z + 1$ |
Associated inertia: | $1$,$1$,$1$ |
Indices of inseparability: | $[15, 10, 4, 0]$ |
Invariants of the Galois closure
Galois degree: | $128$ |
Galois group: | $C_2^5:C_4$ (as 16T273) |
Inertia group: | Intransitive group isomorphic to $C_2^2\wr C_2$ |
Wild inertia group: | $C_2^2\wr C_2$ |
Galois unramified degree: | $4$ |
Galois tame degree: | $1$ |
Galois Artin slopes: | $[2, 2, 3, \frac{7}{2}, \frac{7}{2}]$ |
Galois Swan slopes: | $[1,1,2,\frac{5}{2},\frac{5}{2}]$ |
Galois mean slope: | $3.1875$ |
Galois splitting model: |
$x^{16} - 4 x^{15} - 72 x^{14} - 308 x^{13} - 4218 x^{12} + 10608 x^{11} + 172852 x^{10} + 796036 x^{9} - 5689125 x^{8} - 27424888 x^{7} + 86707996 x^{6} + 349558332 x^{5} - 351830892 x^{4} - 1811704492 x^{3} + 174086580 x^{2} + 3818808664 x - 1652780399$
|