Properties

Label 2.2.8.44c1.32
Base \(\Q_{2}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(44\)
Galois group $C_2^6:S_4$ (as 16T1315)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{8} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + 4 ( x^{2} + x + 1 )^{4} + 8 x + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $44$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_1$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3, \frac{19}{6}, \frac{19}{6}]$
Visible Swan slopes:$[2,\frac{13}{6},\frac{13}{6}]$
Means:$\langle1, \frac{19}{12}, \frac{15}{8}\rangle$
Rams:$(2, \frac{7}{3}, \frac{7}{3})$
Jump set:$[1, 3, 7, 15]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.2.2.6a1.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + 4 x^{7} + 4 t x^{6} + 4 x^{4} + 8 t + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + 1$,$z + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[15, 14, 8, 0]$

Invariants of the Galois closure

Galois degree: $1536$
Galois group: $C_2^6:S_4$ (as 16T1315)
Inertia group: Intransitive group isomorphic to $C_2^6:A_4$
Wild inertia group: $C_2^6:C_2^2$
Galois unramified degree: $2$
Galois tame degree: $3$
Galois Artin slopes: $[\frac{4}{3}, \frac{4}{3}, 2, \frac{8}{3}, \frac{8}{3}, 3, \frac{19}{6}, \frac{19}{6}]$
Galois Swan slopes: $[\frac{1}{3},\frac{1}{3},1,\frac{5}{3},\frac{5}{3},2,\frac{13}{6},\frac{13}{6}]$
Galois mean slope: $3.0494791666666665$
Galois splitting model: $x^{16} - 8 x^{15} - 12 x^{14} + 180 x^{13} + 54 x^{12} - 1452 x^{11} - 880 x^{10} + 3264 x^{9} + 10055 x^{8} + 18596 x^{7} - 40112 x^{6} - 104488 x^{5} + 81002 x^{4} + 177892 x^{3} - 97028 x^{2} - 102028 x + 56663$ Copy content Toggle raw display