| $( x^{2} + x + 1 )^{8} + 2 ( x^{2} + x + 1 )^{7} + 2 x ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 2 ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 6$ ![Copy content]()  ![Toggle raw display]()  | 
  | Base field: | $\Q_{2}$ | 
| Degree $d$: | $16$ | 
      | Ramification index $e$: | $8$ | 
      | Residue field degree $f$: | $2$ | 
      | Discriminant exponent $c$: | $42$ | 
      | Discriminant root field: | $\Q_{2}(\sqrt{5})$ | 
      | Root number: | $-1$ | 
        | $\Aut(K/\Q_{2})$: | $C_2$ | 
    
      | This field is not Galois over $\Q_{2}.$ | 
      | Visible Artin slopes: | $[2, 2, \frac{15}{4}]$ | 
      | Visible Swan slopes: | $[1,1,\frac{11}{4}]$ | 
      | Means: | $\langle\frac{1}{2}, \frac{3}{4}, \frac{7}{4}\rangle$ | 
      | Rams: | $(1, 1, 8)$ | 
      | Jump set: | $[1, 2, 7, 15]$ | 
      | Roots of unity: | $6 = (2^{ 2 } - 1) \cdot 2$ | 
  Fields in the database are given up to isomorphism.  Isomorphic 
  intermediate fields are shown with their multiplicities.
  | Unramified subfield: | $\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of 
    \( x^{2} + x + 1 \) ![Copy content]()  ![Toggle raw display]()  | 
  | Relative Eisenstein polynomial: | \( x^{8} + \left(4 t + 4\right) x^{7} + 2 t x^{6} + \left(8 t + 8\right) x^{5} + 2 x^{4} + 8 x^{3} + 2 \)
    
    $\ \in\Q_{2}(t)[x]$ ![Copy content]()  ![Toggle raw display]()  | 
      