$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + 4 x ( x^{2} + x + 1 )^{5} + 2 ( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 ) + 4 x + 10$
|
Base field: | $\Q_{2}$
|
Degree $d$: | $16$ |
Ramification index $e$: | $8$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $40$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$:
|
$C_2$ |
This field is not Galois over $\Q_{2}.$ |
Visible Artin slopes: | $[2, 3, 3]$ |
Visible Swan slopes: | $[1,2,2]$ |
Means: | $\langle\frac{1}{2}, \frac{5}{4}, \frac{13}{8}\rangle$ |
Rams: | $(1, 3, 3)$ |
Jump set: | $[1, 2, 4, 16]$ |
Roots of unity: | $6 = (2^{ 2 } - 1) \cdot 2$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
Unramified subfield: | $\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{2} + x + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{8} + 4 x^{6} + \left(4 t + 4\right) x^{5} + 2 x^{4} + 4 x^{2} + 4 t + 2 \)
$\ \in\Q_{2}(t)[x]$
|
Galois degree: |
$512$
|
Galois group: |
$C_2^5:\OD_{16}$ (as 16T826)
|
Inertia group: |
not computed
|
Wild inertia group: |
not computed
|
Galois unramified degree: |
$4$
|
Galois tame degree: |
$1$
|
Galois Artin slopes: |
$[2, 2, 2, 3, 3, 3, 3]$
|
Galois Swan slopes: |
$[1,1,1,2,2,2,2]$
|
Galois mean slope: |
$2.921875$
|
Galois splitting model: | not computed |