$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{2} + 8 x + 2$
|
| Base field: | $\Q_{2}$
|
| Degree $d$: | $16$ |
| Ramification index $e$: | $8$ |
| Residue field degree $f$: | $2$ |
| Discriminant exponent $c$: | $40$ |
| Discriminant root field: | $\Q_{2}$ |
| Root number: | $1$ |
| $\Aut(K/\Q_{2})$:
|
$C_2$ |
| This field is not Galois over $\Q_{2}.$ |
| Visible Artin slopes: | $[\frac{8}{3}, \frac{8}{3}, 3]$ |
| Visible Swan slopes: | $[\frac{5}{3},\frac{5}{3},2]$ |
| Means: | $\langle\frac{5}{6}, \frac{5}{4}, \frac{13}{8}\rangle$ |
| Rams: | $(\frac{5}{3}, \frac{5}{3}, 3)$ |
| Jump set: | $[1, 3, 7, 15]$ |
| Roots of unity: | $6 = (2^{ 2 } - 1) \cdot 2$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| Unramified subfield: | $\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{2} + x + 1 \)
|
| Relative Eisenstein polynomial: |
\( x^{8} + 4 x^{5} + 4 t x^{4} + 4 x^{2} + 8 t + 2 \)
$\ \in\Q_{2}(t)[x]$
|
| Galois degree: |
$384$
|
| Galois group: |
$C_2\wr S_3$ (as 16T765)
|
| Inertia group: |
Intransitive group isomorphic to $C_2^2\wr C_3$
|
| Wild inertia group: |
$C_2^6$
|
| Galois unramified degree: |
$2$
|
| Galois tame degree: |
$3$
|
| Galois Artin slopes: |
$[\frac{4}{3}, \frac{4}{3}, 2, \frac{8}{3}, \frac{8}{3}, 3]$
|
| Galois Swan slopes: |
$[\frac{1}{3},\frac{1}{3},1,\frac{5}{3},\frac{5}{3},2]$
|
| Galois mean slope: |
$2.6979166666666665$
|
| Galois splitting model: |
$x^{16} - 24 x^{14} + 76 x^{12} - 584 x^{10} + 7086 x^{8} - 20360 x^{6} + 6460 x^{4} - 600 x^{2} + 25$
|