Properties

Label 2.2.8.40c1.11
Base \(\Q_{2}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(40\)
Galois group $C_2\wr S_3$ (as 16T765)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{2} + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $40$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{8}{3}, \frac{8}{3}, 3]$
Visible Swan slopes:$[\frac{5}{3},\frac{5}{3},2]$
Means:$\langle\frac{5}{6}, \frac{5}{4}, \frac{13}{8}\rangle$
Rams:$(\frac{5}{3}, \frac{5}{3}, 3)$
Jump set:$[1, 3, 7, 15]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.2.2.6a1.3, 2.2.4.16a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + 4 x^{5} + 4 t x^{4} + 4 x^{2} + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$
Indices of inseparability:$[13, 10, 8, 0]$

Invariants of the Galois closure

Galois degree: $384$
Galois group: $C_2\wr S_3$ (as 16T765)
Inertia group: Intransitive group isomorphic to $C_2^2\wr C_3$
Wild inertia group: $C_2^6$
Galois unramified degree: $2$
Galois tame degree: $3$
Galois Artin slopes: $[\frac{4}{3}, \frac{4}{3}, 2, \frac{8}{3}, \frac{8}{3}, 3]$
Galois Swan slopes: $[\frac{1}{3},\frac{1}{3},1,\frac{5}{3},\frac{5}{3},2]$
Galois mean slope: $2.6979166666666665$
Galois splitting model: $x^{16} - 4 x^{15} + 20 x^{14} - 20 x^{13} + 226 x^{12} + 360 x^{11} + 2064 x^{10} + 2640 x^{9} + 9981 x^{8} + 11920 x^{7} + 36680 x^{6} + 28496 x^{5} + 75906 x^{4} + 64580 x^{3} + 132040 x^{2} + 81260 x + 27455$ Copy content Toggle raw display