$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{2} + 2$
|
Base field: | $\Q_{2}$
|
Degree $d$: | $16$ |
Ramification index $e$: | $8$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $40$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$:
|
$C_2$ |
This field is not Galois over $\Q_{2}.$ |
Visible Artin slopes: | $[\frac{8}{3}, \frac{8}{3}, 3]$ |
Visible Swan slopes: | $[\frac{5}{3},\frac{5}{3},2]$ |
Means: | $\langle\frac{5}{6}, \frac{5}{4}, \frac{13}{8}\rangle$ |
Rams: | $(\frac{5}{3}, \frac{5}{3}, 3)$ |
Jump set: | $[1, 3, 7, 15]$ |
Roots of unity: | $6 = (2^{ 2 } - 1) \cdot 2$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
Galois degree: |
$384$
|
Galois group: |
$C_2\wr S_3$ (as 16T765)
|
Inertia group: |
Intransitive group isomorphic to $C_2^2\wr C_3$
|
Wild inertia group: |
$C_2^6$
|
Galois unramified degree: |
$2$
|
Galois tame degree: |
$3$
|
Galois Artin slopes: |
$[\frac{4}{3}, \frac{4}{3}, 2, \frac{8}{3}, \frac{8}{3}, 3]$
|
Galois Swan slopes: |
$[\frac{1}{3},\frac{1}{3},1,\frac{5}{3},\frac{5}{3},2]$
|
Galois mean slope: |
$2.6979166666666665$
|
Galois splitting model: |
$x^{16} - 4 x^{15} + 20 x^{14} - 20 x^{13} + 226 x^{12} + 360 x^{11} + 2064 x^{10} + 2640 x^{9} + 9981 x^{8} + 11920 x^{7} + 36680 x^{6} + 28496 x^{5} + 75906 x^{4} + 64580 x^{3} + 132040 x^{2} + 81260 x + 27455$
|