Properties

Label 2.2.8.36b9.25
Base \(\Q_{2}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(36\)
Galois group $C_2^5.D_4$ (as 16T633)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{8} + 6 ( x^{2} + x + 1 )^{7} + 2 x ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{4} + 4 x ( x^{2} + x + 1 )^{3} + 14$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $36$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2^2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 2, 3]$
Visible Swan slopes:$[1,1,2]$
Means:$\langle\frac{1}{2}, \frac{3}{4}, \frac{11}{8}\rangle$
Rams:$(1, 1, 5)$
Jump set:$[1, 2, 7, 15]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.2.2.4a2.2, 2.2.4.12a4.2, 2.2.4.16b3.7, 2.2.4.16b3.5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + \left(4 t + 4\right) x^{7} + 2 t x^{6} + 4 t x^{5} + 2 x^{4} + 4 t x^{3} + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^6 + z^2 + t$,$t z + t$
Associated inertia:$2$,$1$
Indices of inseparability:$[11, 6, 4, 0]$

Invariants of the Galois closure

Galois degree: $256$
Galois group: $C_2^5.D_4$ (as 16T633)
Inertia group: Intransitive group isomorphic to $D_4\times C_2^3$
Wild inertia group: $D_4\times C_2^3$
Galois unramified degree: $4$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 2, 2, 3, 3]$
Galois Swan slopes: $[1,1,1,1,2,2]$
Galois mean slope: $2.71875$
Galois splitting model: $x^{16} + 6 x^{14} - 60 x^{13} - 260 x^{12} - 1476 x^{11} - 5958 x^{10} - 21888 x^{9} - 66780 x^{8} - 159048 x^{7} - 305682 x^{6} - 447252 x^{5} - 505664 x^{4} - 414252 x^{3} - 216462 x^{2} - 62280 x - 7421$ Copy content Toggle raw display