$( x^{2} + x + 1 )^{8} + 4 x ( x^{2} + x + 1 )^{7} + 2 ( x^{2} + x + 1 )^{6} + 4 ( x^{2} + x + 1 )^{5} + 2 ( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{3} + 2$
|
| Base field: | $\Q_{2}$
|
| Degree $d$: | $16$ |
| Ramification index $e$: | $8$ |
| Residue field degree $f$: | $2$ |
| Discriminant exponent $c$: | $36$ |
| Discriminant root field: | $\Q_{2}$ |
| Root number: | $1$ |
| $\Aut(K/\Q_{2})$:
|
$C_2$ |
| This field is not Galois over $\Q_{2}.$ |
| Visible Artin slopes: | $[2, 2, 3]$ |
| Visible Swan slopes: | $[1,1,2]$ |
| Means: | $\langle\frac{1}{2}, \frac{3}{4}, \frac{11}{8}\rangle$ |
| Rams: | $(1, 1, 5)$ |
| Jump set: | $[1, 2, 7, 15]$ |
| Roots of unity: | $6 = (2^{ 2 } - 1) \cdot 2$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| Unramified subfield: | $\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{2} + x + 1 \)
|
| Relative Eisenstein polynomial: |
\( x^{8} + 4 t x^{7} + 2 x^{6} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 2 \)
$\ \in\Q_{2}(t)[x]$
|
| Galois degree: |
$384$
|
| Galois group: |
$C_2^4:(C_2\times A_4)$ (as 16T716)
|
| Inertia group: |
Intransitive group isomorphic to $D_4:C_2^3$
|
| Wild inertia group: |
$D_4:C_2^3$
|
| Galois unramified degree: |
$6$
|
| Galois tame degree: |
$1$
|
| Galois Artin slopes: |
$[2, 2, 2, 2, 2, 3]$
|
| Galois Swan slopes: |
$[1,1,1,1,1,2]$
|
| Galois mean slope: |
$2.46875$
|
| Galois splitting model: |
$x^{16} - 16 x^{12} - 24 x^{10} + 166 x^{8} - 16 x^{6} - 256 x^{4} + 232 x^{2} + 729$
|