Properties

Label 2.2.8.36b6.1
Base \(\Q_{2}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(36\)
Galois group $C_2^2\times A_4$ (as 16T58)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{8} + 2 ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{3} + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $36$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2^2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, 2, 3]$
Visible Swan slopes:$[1,1,2]$
Means:$\langle\frac{1}{2}, \frac{3}{4}, \frac{11}{8}\rangle$
Rams:$(1, 1, 5)$
Jump set:$[1, 2, 7, 15]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, $\Q_{2}(\sqrt{-2})$, $\Q_{2}(\sqrt{-2\cdot 5})$, 2.2.2.6a1.1, 2.1.4.6a2.1, 2.2.4.12a3.1, 2.1.8.18b2.2, 2.1.8.18b2.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + 2 x^{6} + 2 x^{4} + 4 x^{3} + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^6 + z^2 + 1$,$z + 1$
Associated inertia:$3$,$1$
Indices of inseparability:$[11, 6, 4, 0]$

Invariants of the Galois closure

Galois degree: $48$
Galois group: $C_2^2\times A_4$ (as 16T58)
Inertia group: Intransitive group isomorphic to $C_2^3$
Wild inertia group: $C_2^3$
Galois unramified degree: $6$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 3]$
Galois Swan slopes: $[1,1,2]$
Galois mean slope: $2.25$
Galois splitting model: $x^{16} - 12 x^{14} + 38 x^{12} + 72 x^{10} + 127 x^{8} + 152 x^{6} + 106 x^{4} + 44 x^{2} + 9$ Copy content Toggle raw display