Defining polynomial
$( x^{2} + x + 1 )^{8} + 2 ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{3} + 2$
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $16$ |
Ramification index $e$: | $8$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $36$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $1$ |
$\Aut(K/\Q_{2})$: | $C_2^2$ |
This field is not Galois over $\Q_{2}.$ | |
Visible Artin slopes: | $[2, 2, 3]$ |
Visible Swan slopes: | $[1,1,2]$ |
Means: | $\langle\frac{1}{2}, \frac{3}{4}, \frac{11}{8}\rangle$ |
Rams: | $(1, 1, 5)$ |
Jump set: | $[1, 2, 7, 15]$ |
Roots of unity: | $6 = (2^{ 2 } - 1) \cdot 2$ |
Intermediate fields
$\Q_{2}(\sqrt{5})$, $\Q_{2}(\sqrt{-2})$, $\Q_{2}(\sqrt{-2\cdot 5})$, 2.2.2.6a1.1, 2.1.4.6a2.1, 2.2.4.12a3.1, 2.1.8.18b2.2, 2.1.8.18b2.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{2} + x + 1 \)
|
Relative Eisenstein polynomial: |
\( x^{8} + 2 x^{6} + 2 x^{4} + 4 x^{3} + 2 \)
$\ \in\Q_{2}(t)[x]$
|
Ramification polygon
Residual polynomials: | $z^6 + z^2 + 1$,$z + 1$ |
Associated inertia: | $3$,$1$ |
Indices of inseparability: | $[11, 6, 4, 0]$ |
Invariants of the Galois closure
Galois degree: | $48$ |
Galois group: | $C_2^2\times A_4$ (as 16T58) |
Inertia group: | Intransitive group isomorphic to $C_2^3$ |
Wild inertia group: | $C_2^3$ |
Galois unramified degree: | $6$ |
Galois tame degree: | $1$ |
Galois Artin slopes: | $[2, 2, 3]$ |
Galois Swan slopes: | $[1,1,2]$ |
Galois mean slope: | $2.25$ |
Galois splitting model: |
$x^{16} - 12 x^{14} + 38 x^{12} + 72 x^{10} + 127 x^{8} + 152 x^{6} + 106 x^{4} + 44 x^{2} + 9$
|