$( x^{2} + x + 1 )^{8} + 2 ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{5} + 2 x ( x^{2} + x + 1 )^{4} + 4 x ( x^{2} + x + 1 )^{2} + \left(4 x + 4\right) ( x^{2} + x + 1 ) + 2$
|
| Base field: | $\Q_{2}$
|
| Degree $d$: | $16$ |
| Ramification index $e$: | $8$ |
| Residue field degree $f$: | $2$ |
| Discriminant exponent $c$: | $32$ |
| Discriminant root field: | $\Q_{2}$ |
| Root number: | $1$ |
| $\Aut(K/\Q_{2})$:
|
$C_1$ |
| This field is not Galois over $\Q_{2}.$ |
| Visible Artin slopes: | $[2, \frac{7}{3}, \frac{7}{3}]$ |
| Visible Swan slopes: | $[1,\frac{4}{3},\frac{4}{3}]$ |
| Means: | $\langle\frac{1}{2}, \frac{11}{12}, \frac{9}{8}\rangle$ |
| Rams: | $(1, \frac{5}{3}, \frac{5}{3})$ |
| Jump set: | $[1, 3, 7, 15]$ |
| Roots of unity: | $6 = (2^{ 2 } - 1) \cdot 2$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| Unramified subfield: | $\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of
\( x^{2} + x + 1 \)
|
| Relative Eisenstein polynomial: |
\( x^{8} + 2 t x^{4} + 4 t x^{2} + \left(4 t + 4\right) x + 6 \)
$\ \in\Q_{2}(t)[x]$
|
| Galois degree: |
$18432$
|
| Galois group: |
$C_2^6.A_4\wr C_2$ (as 16T1783)
|
| Inertia group: |
intransitive group not computed
|
| Wild inertia group: |
not computed
|
| Galois unramified degree: |
$6$
|
| Galois tame degree: |
$3$
|
| Galois Artin slopes: |
$[\frac{4}{3}, \frac{4}{3}, \frac{4}{3}, \frac{4}{3}, 2, 2, \frac{7}{3}, \frac{7}{3}, \frac{7}{3}, \frac{7}{3}]$
|
| Galois Swan slopes: |
$[\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},1,1,\frac{4}{3},\frac{4}{3},\frac{4}{3},\frac{4}{3}]$
|
| Galois mean slope: |
$2.3014322916666665$
|
| Galois splitting model: |
$x^{16} + 12 x^{14} - 32 x^{13} + 240 x^{12} - 720 x^{11} + 2568 x^{10} - 5472 x^{9} + 8172 x^{8} - 7040 x^{7} + 9360 x^{6} - 34944 x^{5} + 59056 x^{4} - 58368 x^{3} + 43200 x^{2} - 12096 x + 1296$
|