Properties

Label 2.2.8.32d5.2
Base \(\Q_{2}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(32\)
Galois group $C_2^6.A_4\wr C_2$ (as 16T1783)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{8} + 2 ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{5} + 2 x ( x^{2} + x + 1 )^{4} + 4 x ( x^{2} + x + 1 )^{2} + \left(4 x + 4\right) ( x^{2} + x + 1 ) + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $32$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_1$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[2, \frac{7}{3}, \frac{7}{3}]$
Visible Swan slopes:$[1,\frac{4}{3},\frac{4}{3}]$
Means:$\langle\frac{1}{2}, \frac{11}{12}, \frac{9}{8}\rangle$
Rams:$(1, \frac{5}{3}, \frac{5}{3})$
Jump set:$[1, 3, 7, 15]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.2.2.4a2.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + 2 t x^{4} + 4 t x^{2} + \left(4 t + 4\right) x + 6 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + t$,$t z + (t + 1)$
Associated inertia:$1$,$1$
Indices of inseparability:$[9, 9, 4, 0]$

Invariants of the Galois closure

Galois degree: $18432$
Galois group: $C_2^6.A_4\wr C_2$ (as 16T1783)
Inertia group: intransitive group not computed
Wild inertia group: not computed
Galois unramified degree: $6$
Galois tame degree: $3$
Galois Artin slopes: $[\frac{4}{3}, \frac{4}{3}, \frac{4}{3}, \frac{4}{3}, 2, 2, \frac{7}{3}, \frac{7}{3}, \frac{7}{3}, \frac{7}{3}]$
Galois Swan slopes: $[\frac{1}{3},\frac{1}{3},\frac{1}{3},\frac{1}{3},1,1,\frac{4}{3},\frac{4}{3},\frac{4}{3},\frac{4}{3}]$
Galois mean slope: $2.3014322916666665$
Galois splitting model: $x^{16} + 12 x^{14} - 32 x^{13} + 240 x^{12} - 720 x^{11} + 2568 x^{10} - 5472 x^{9} + 8172 x^{8} - 7040 x^{7} + 9360 x^{6} - 34944 x^{5} + 59056 x^{4} - 58368 x^{3} + 43200 x^{2} - 12096 x + 1296$ Copy content Toggle raw display