$( x^{2} + x + 1 )^{8} + 2 ( x^{2} + x + 1 )^{7} + 2 x ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 ) + 6$
|
Base field: | $\Q_{2}$
|
Degree $d$: | $16$ |
Ramification index $e$: | $8$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $32$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $-1$ |
$\Aut(K/\Q_{2})$:
|
$C_2$ |
This field is not Galois over $\Q_{2}.$ |
Visible Artin slopes: | $[2, 2, \frac{5}{2}]$ |
Visible Swan slopes: | $[1,1,\frac{3}{2}]$ |
Means: | $\langle\frac{1}{2}, \frac{3}{4}, \frac{9}{8}\rangle$ |
Rams: | $(1, 1, 3)$ |
Jump set: | $[1, 2, 7, 15]$ |
Roots of unity: | $6 = (2^{ 2 } - 1) \cdot 2$ |
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
Galois degree: |
$512$
|
Galois group: |
$C_2^3.C_2\wr C_4$ (as 16T914)
|
Inertia group: |
not computed
|
Wild inertia group: |
not computed
|
Galois unramified degree: |
$8$
|
Galois tame degree: |
$1$
|
Galois Artin slopes: |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}]$
|
Galois Swan slopes: |
$[1,1,1,1,\frac{3}{2},\frac{3}{2}]$
|
Galois mean slope: |
$2.34375$
|
Galois splitting model: | not computed |